Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis.
نویسندگان
چکیده
We show that, during budding yeast meiosis, axis ensemble Hop1/Red1 and synaptonemal complex (SC) component Zip1 tend to occur in alternating strongly staining domains. The widely conserved AAA+-ATPase Pch2 mediates this pattern, likely by means of direct intervention along axes. Pch2 also coordinately promotes timely progression of cross-over (CO) and noncross-over (NCO) recombination. Oppositely, in a checkpoint-triggering aberrant situation (zip1Delta), Pch2 mediates robust arrest of stalled recombination complexes, likely via nucleolar localization. We suggest that, during WT meiosis, Pch2 promotes progression of SC-associated CO and NCO recombination complexes at a regulated early-midpachytene transition that is rate-limiting for later events; in contrast, during defective meiosis, Pch2 ensures that aberrant recombination complexes fail to progress so that intermediates can be harmlessly repaired during eventual return to growth. Positive vs. negative roles of Pch2 in the two situations are analogous to positive vs. negative roles of Mec1/ATR, suggesting that Pch2 might mediate Mec1/ATR activity. We further propose that regulatory surveillance of normal and abnormal interchromosomal interactions in mitotic and meiotic cells may involve "structure-dependent interchromosomal interaction" (SDIX) checkpoints.
منابع مشابه
Pch2 modulates chromatid partner choice during meiotic double-strand break repair in Saccharomyces cerevisiae.
In most organisms, the segregation of chromosomes during the first meiotic division is dependent upon at least one crossover (CO) between each pair of homologous chromosomes. COs can result from chromosome double-strand breaks (DSBs) that are induced and preferentially repaired using the homologous chromosome as a template. The PCH2 gene of budding yeast is required to establish proper meiotic ...
متن کاملChromosome Axis Defects Induce a Checkpoint-Mediated Delay and Interchromosomal Effect on Crossing Over during Drosophila Meiosis
Crossovers mediate the accurate segregation of homologous chromosomes during meiosis. The widely conserved pch2 gene of Drosophila melanogaster is required for a pachytene checkpoint that delays prophase progression when genes necessary for DSB repair and crossover formation are defective. However, the underlying process that the pachytene checkpoint is monitoring remains unclear. Here we have ...
متن کاملTwo Distinct Surveillance Mechanisms Monitor Meiotic Chromosome Metabolism in Budding Yeast
Meiotic recombination is initiated by Spo11-generated DNA double-strand breaks (DSBs) . A fraction of total DSBs is processed into crossovers (CRs) between homologous chromosomes, which promote their accurate segregation at meiosis I (MI) . The coordination of recombination-associated events and MI progression is governed by the "pachytene checkpoint", which in budding yeast requires Rad17, a c...
متن کاملPch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis
Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA(+)-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, m...
متن کاملPch2 Links Chromatin Silencing to Meiotic Checkpoint Control
The PCH2 gene of Saccharomyces cerevisiae is required for the meiotic checkpoint that prevents chromosome segregation when recombination and chromosome synapsis are defective. Mutation of PCH2 relieves the checkpoint-induced pachytene arrest of the zip1, zip2, and dmc1 mutants, resulting in chromosome missegregation and low spore viability. Most of the Pch2 protein localizes to the nucleolus, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 9 شماره
صفحات -
تاریخ انتشار 2008